Subscribe to RSS
DOI: 10.1055/s-0030-1265225
© Georg Thieme Verlag KG Stuttgart · New York
Differential Effects of Resveratrol and SRT1720 on Lifespan of Adult Caenorhabditis elegans
Publication History
received 05.07.2010
accepted 31.08.2010
Publication Date:
05 October 2010 (online)

Abstract
Resveratrol and SRT1720 have been shown to act as sirtuin activators that may ameliorate type 2 diabetes and metabolic diseases in mice. Moreover, resveratrol extends lifespan in model organisms like C. elegans, N. furzeri, and possibly D. melanogaster. The aim of the study was to test whether pharmacological concentrations of resveratrol and SRT1720 are capable of extending lifespan in a nematodal model organism for aging processes, the roundworm Caenorhabditis elegans. Several hundreds of adult C. elegans roundworms were maintained on agar plates and fed E. coli strain OP50 bacteria. Resveratrol (5 micromolar, 500 nanomolar) or SRT1720 (1 micromolar, 100 nanomolar) was applied to the agar to test whether they may promote longevity by quantifying survival in the presence and absence of the respective compounds. At a dose of 5 micromolar, which is pharmacologically relevant and 20 times lower than previously published concentrations, resveratrol significantly extends C. elegans lifespan by 3.6% (mean lifespan) and 3.4% (maximum lifespan). By unexpected contrast, SRT1720, which was previously proposed to be several hundred times more active than resveratrol, did not extend lifespan at none of the concentrations tested. Thus, in the model organisms C. elegans, resveratrol is capable of promoting longevity at a concentration that pharmacologically relevant and 20 times lower than previously published doses. The sirtuin activator SRT1720 did not extend lifespan, suggesting that in C. elegans, some relevant effects of resveratrol cannot be mimicked by SRT1720.
Key words
aging - diabetes - sirtuins - signaling - model organisms - nematodes - calorie restriction mimetics
References
- 1
Friedman DB, Johnson TE.
A mutation in the age-1 gene in Caenorhabditis elegans lengthens life and reduces
hermaphrodite fertility.
Genetics.
1988;
118
75-86
MissingFormLabel
- 2
Kenyon C, Chang J, Gensch E, Rudner A, Tabtiang R.
A C. elegans mutant that lives twice as long as wild type.
Nature.
1993;
366
461-464
MissingFormLabel
- 3
Kimura KD, Tissenbaum HA, Liu Y, Ruvkun G.
daf-2, an insulin receptor-like gene that regulates longevity and diapause in Caenorhabditis
elegans.
Science.
1997;
277
942-946
MissingFormLabel
- 4
Clancy DJ, Gems D, Harshman LG, Oldham S, Stocker H, Hafen E, Leevers SJ, Partridge L.
Extension of life-span by loss of CHICO, a Drosophila insulin receptor substrate protein.
Science.
2001;
292
104-106
MissingFormLabel
- 5
Tatar M, Kopelman A, Epstein D, Tu MP, Yin CM, Garofalo RS.
Extension of life-span by loss of CHICO, a Drosophila insulin receptor substrate protein.
Science.
2001;
292
104-106
MissingFormLabel
- 6
Brown-Borg HM, Borg KE, Meliska CJ, Bartke A.
Dwarf mice and the ageing process.
Nature.
1996;
384
33
MissingFormLabel
- 7
Holzenberger M, Dupont J, Ducos B, Leneuve P, Geloen A, Even PC, Cervera P, Le Bouc Y.
IGF-1 receptor regulates lifespan and resistance to oxidative stress in mice.
Nature.
2003;
421
182-187
MissingFormLabel
- 8
Blüher M, Kahn BB, Kahn CR.
Extended longevity in mice lacking the insulin receptor in adipose tissue.
Science.
2003;
299
572-574
MissingFormLabel
- 9 Weindruch R, Walford RL. The retardation of aging and disease by dietary restriction. Springfield, Illinois: Charles C Thomas Pub Ltd; 1988
MissingFormLabel
- 10
Colman RJ, Anderson RM, Johnson SC, Kastman EK, Kosmatka KJ, Beasley TM, Allison DB, Cruzen C, Simmons HA, Kemnitz JW, Weindruch R.
Caloric restriction delays disease onset and mortality in rhesus monkeys.
Science.
2009;
325
201-204
MissingFormLabel
- 11
Vellai T, Takacs-Vellai K, Zhang Y, Kovacs AL, Orosz L, Muller F.
Genetics: influence of TOR kinase on lifespan in C. elegans.
Nature.
2003;
426
620
MissingFormLabel
- 12
Harrison DE, Strong R, Sharp ZD, Nelson JF, Astle CM, Flurkey K, Nadon NL, Wilkinson JE, Frenkel K, Carter CS, Pahor M, Javors MA, Fernandez E, Miller RA.
Rapamycin fed late in life extends lifespan in genetically heterogeneous mice.
Nature.
2009;
460
392-395
MissingFormLabel
- 13
Kaeberlein M.
Resveratrol and rapamycin: are they anti-aging drugs?.
Bioessays.
2010;
32
96-99
MissingFormLabel
- 14
Howitz KT, Bitterman KJ, Cohen HY, Lamming DW, Lavu S, Wood JG, Zipkin RE, Chung P, Kisielewski A, Zhang LL, Scherer B, Sinclair DA.
Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan.
Nature.
2003;
425
191-196
MissingFormLabel
- 15
Wood JG, Rogina B, Lavu S, Howitz K, Helfand SL, Tatar M, Sinclair DA.
Sirtuin activators mimic caloric restriction and delay ageing in metazoans.
Nature.
2004;
430
686-689
MissingFormLabel
- 16
Baur JA, Pearson KJ, Price NL, Jamieson HA, Lerin C, Kalra A, Prabhu VV, Allard JS, Lopez-Lluch G, Lewis K, Pistell PJ, Poosala S, Becker KG, Boss O, Gwinn D, Wang M, Ramaswamy S, Fishbein KW, Spencer RG, Lakatta EG, Le Couteur D, Shaw RJ, Navas P, Puigserver P, Ingram DK, de Cabo R, Sinclair DA.
Resveratrol improves health and survival of mice on a high-calorie diet.
Nature.
2006;
444
337-342
MissingFormLabel
- 17
Pearson KJ, Baur JA, Lewis KN, Peshkin L, Price NL, Labinskyy N, Swindell WR, Kamara D, Minor RK, Perez E, Jamieson HA, Zhang Y, Dunn SR, Sharma K, Pleshko N, Woollett LA, Csiszar A, Ikeno Y, Le Couteur D, Elliott PJ, Becker KG, Navas P, Ingram DK, Wolf NS, Ungvari Z, Sinclair DA, de Cabo R.
Resveratrol Delays Age-Related Deterioration and Mimics Transcriptional Aspects of
Dietary Restriction without Extending Life Span.
Cell Metab.
2008;
8
157-168
MissingFormLabel
- 18
Schulz TJ, Zarse K, Voigt A, Urban N, Birringer M, Ristow M.
Glucose restriction extends Caenorhabditis elegans life span by inducing mitochondrial
respiration and increasing oxidative stress.
Cell Metab.
2007;
6
280-293
MissingFormLabel
- 19
Minor RK, Smith Jr DL, Sossong AM, Kaushik S, Poosala S, Spangler EL, Roth GS, Lane M, Allison DB, de Cabo R, Ingram DK, Mattison JA.
Chronic ingestion of 2-deoxy-D-glucose induces cardiac vacuolization and increases
mortality in rats.
Toxicol Appl Pharmacol.
2010;
243
332-339
MissingFormLabel
- 20
Milne JC, Lambert PD, Schenk S, Carney DP, Smith JJ, Gagne DJ, Jin L, Boss O, Perni RB, Vu CB, Bemis JE, Xie R, Disch JS, Ng PY, Nunes JJ, Lynch AV, Yang H, Galonek H, Israelian K, Choy W, Iffland A, Lavu S, Medvedik O, Sinclair DA, Olefsky JM, Jirousek MR, Elliott PJ, Westphal CH.
Small molecule activators of SIRT1 as therapeutics for the treatment of type 2 diabetes.
Nature.
2007;
450
712-716
MissingFormLabel
- 21
Lithgow GJ, White TM, Melov S, Johnson TE.
Thermotolerance and extended life-span conferred by single-gene mutations and induced
by thermal stress.
Proc Natl Acad Sci USA.
1995;
92
7540-7544
MissingFormLabel
- 22
Feige JN, Lagouge M, Canto C, Strehle A, Houten SM, Milne JC, Lambert PD, Mataki C, Elliott PJ, Auwerx J.
Specific SIRT1 activation mimics low energy levels and protects against diet-induced
metabolic disorders by enhancing fat oxidation.
Cell Metab.
2008;
8
347-358
MissingFormLabel
- 23
Viswanathan M, Kim SK, Berdichevsky A, Guarente L.
A role for SIR-2.1 regulation of ER stress response genes in determining C. elegans
life span.
Dev Cell.
2005;
9
605-615
MissingFormLabel
- 24
Gruber J, Tang SY, Halliwell B.
Evidence for a trade-off between survival and fitness caused by resveratrol treatment
of Caenorhabditis elegans.
Ann NY Acad Sci.
2007;
1100
530-542
MissingFormLabel
- 25
Bass TM, Weinkove D, Houthoofd K, Gems D, Partridge L.
Effects of resveratrol on lifespan in Drosophila melanogaster and Caenorhabditis elegans.
Mech Ageing Dev.
2007;
128
546-552
MissingFormLabel
- 26
Greer EL, Brunet A.
Different dietary restriction regimens extend lifespan by both independent and overlapping
genetic pathways in C. elegans.
Aging Cell.
2009;
8
113-127
MissingFormLabel
- 27
Bauer JH, Goupil S, Garber GB, Helfand SL.
An accelerated assay for the identification of lifespan-extending interventions in
Drosophila melanogaster.
Proc Natl Acad Sci USA.
2004;
101
12980-12985
MissingFormLabel
- 28
Burns J, Yokota T, Ashihara H, Lean ME, Crozier A.
Plant foods and herbal sources of resveratrol.
J Agric Food Chem.
2002;
50
3337-3340
MissingFormLabel
- 29
Asensi M, Medina I, Ortega A, Carretero J, Bano MC, Obrador E, Estrela JM.
Inhibition of cancer growth by resveratrol is related to its low bioavailability.
Free Radic Biol Med.
2002;
33
387-398
MissingFormLabel
- 30
Marier JF, Vachon P, Gritsas A, Zhang J, Moreau JP, Ducharme MP.
Metabolism and disposition of resveratrol in rats: extent of absorption, glucuronidation,
and enterohepatic recirculation evidenced by a linked-rat model.
J Pharmacol Exp Ther.
2002;
302
369-373
MissingFormLabel
- 31
Walle T, Hsieh F, DeLegge MH, Oatis Jr JE, Walle UK.
High absorption but very low bioavailability of oral resveratrol in humans.
Drug Metab Dispos.
2004;
32
1377-1382
MissingFormLabel
- 32
Yamazaki Y, Usui I, Kanatani Y, Matsuya Y, Tsuneyama K, Fujisaka S, Bukhari A, Suzuki H, Senda S, Imanishi S, Hirata K, Ishiki M, Hayashi R, Urakaze M, Nemoto H, Kobayashi M, Tobe K.
Treatment with SRT1720, a SIRT1 Activator, Ameliorates Fatty Liver with Reduced Expression
of Lipogenic Enzymes in MSG Mice.
Am J Physiol Endocrinol Metab.
2009;
297
E1179-1186
MissingFormLabel
- 33
Pacholec M, Chrunyk BA, Cunningham D, Flynn D, Griffith DA, Griffor M, Loulakis P, Pabst B, Qiu X, Stockman B, Thanabal V, Varghese A, Ward J, Withka J, Ahn K.
SRT1720, SRT2183, SRT1460, and resveratrol are not direct activators of SIRT1.
J Biol Chem.
2010;
285
8340-8351
MissingFormLabel
Correspondence
M. Ristow
Department of Human Nutrition
Institute of Nutrition
University of Jena
07743 Jena
Germany
Phone: +49/3641/949 630
Fax: +49/3641/949 632
Email: mristow@mristow.org